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RADAR RESONANCE REFLECTION FROM SETS OF
PLANE DIELECTRIC LAYERS

P. D. Jackins and G. C. Gaunaurd
Naval Surface Weapons Center

White Oak, Silver Spring, MD 20910

ABSTRACT

The prediction of the Resonance Scattering Theory (RST) for the
reflection coefficient from a set of two contiguous plane dielectric
layers separating two semi-infinite dissimilar non-conducting media,
is constructed and compared to the exact classical model solution.
The conparison serves to: a) show the accuracy and simplicity of the
RST-prediction, and h) to underline the usefulness of the RST to
produce sirple physical interpretations of generally complex
phenomena. The analysis provides a systematic method for detecting
the presence of a dielectric layer under another one covering it
(possibly the situation caused by an oil spill in ice-covered Arctic
regions), by certain modulation effects present in the "response
surface" of the returned echoes. This method also identifies the
material corposition of the lower or hidden layer in the bilaminar
configuration. The process disentangles which resonance feature
present in the radar reflection coefficient is caused by which of the
two interactina layers. This, therefore, solves the inverse
scatterlnq problem for the composition and thickness not only of the
top visible (ice) layer, but also of the substance (oil) hidden under
that upper layer.

INTRODUCTION

For many years wave reflection and transmission through
penetrable layered media has been a well plowed field of research
where solutions usually have been qiven in terms of reflection and
transmission coefficients. These coefficients describe the energy
fraction returned by, or transmitted through, the (possibly layered)
scatterer (1-7). While such solutions are exact, they are so
cumbersome for systems of two or more plane interacting layers that
they hardly ever permit a quick understanding of the physics behind1/



the results. A novel analytical approach denoted the Resonance
Scattering Theory (RST) (8) has been recently developed at NSWC.
This method has been applied to many probelms dealing with the
scattering of (acoustic, electromagnetic and elastic) waves by
penetrable objects, mostly of simple shapes (8). While the results
generated by means of the RST are mostly approximations, their
simplicity and accuracy permits a greater insight and deeper
understanding of the physical mechanisms involved in their generation
than was ever before possible.

In general, under the dissecting knife of the RST, each of the
partial waves (or normal modes) making up the total scattered field
by a tarqet can be subdivided into two contributions. The first one,
denoted the "background," represents the wave-field returned by an
otherwise identical but impenetrable scatterer. The second portion
of the scattered wave-field represents, and is caused by, the
resonances of the internal penetrable material making up the
scatterer (8). The splitting described above also holds for the
reflection coefficient from plane layers where the "hackgrounds" are
usually constants. The RST was recently applied to the problem of
sound transmission/reflection through/by a liquid layer embedded
within one fluid (9), and later when the liquid layer separates two
dissimilar fluids (10). In electromagnetism the method was first
conceived and developed for the spherical geometry (11), and

presently for sets of plane, dielectric, interacting layers.

I. THE CLASSICAL MODEL

We are particularly concerned here with the detection and
possible material characterization of thin petroleum (oil) layers
lying beneath a relatively thick overlayer of ice using radar echoes.
We will model here, however, a general situation consisting of two
interacting layers (ice and oil) separating an upper (air) from a
lower (water) medium while (radar) electromagnetic waves are incident
on the bilanlnar system from the upper (air) side. (See Figure 1.) We
exploit here the fact that both substances have different dielectric
constants and different thicknesses, which will excite certain
characteristic "resonance features" in the returned radar echoes.
These features can be made manifest and much more understandable
under the light of the RST.

We assume that the bilaminar system is composed of two ideally
bonded layers with the upper one (ice) thicker than the lower one
(oil). Following the approach of Brekhovskikh (6) the oil-water
interface is chosen as the origin of the coordinate system, as shown
in Figure 1, while the water (medium 1) and the air (medium 4) are
considered to be semi-infinite in the±z directions. Media 2 and 3,
of thicknesses d2 and ds, are the oil and the ice, respectively, and
we further assume that d2 <d3 . The incident electromagnetic wave is
assumed to emanate from a distant source in medium 4 and it is
polarized with the electric vector t parallel to the media

2
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interfaces. Maxwell's equations In Gaussian units ire

" 47rc -"b C BE A.
V x H - .- E + V E -0 (1)co  c o  Bt

V xL HH J'=V-H 0co  a t

where c is the dielectric constant, co is the speed of light in
vaccuum, and p, o are the permeability, conductivity of the medium
supporting the wave, respectively. For plane monochromatic waves
with time-dependence e-iwt, Maxwell's equat.ions reduce to:

- iwc' W
VX H E, V x E H (2)CO CO

where

Ef + i r (3)

In general, air, fresh water, oil, and fresh water ice are
sufficiently poor conductors so that aoO. Ye note. that salt water
and salt water ice are relatively better conductors, and thus,
corrections are needed in such instances. The (vector) Helmholtz
equation for r is found by taking the curl of the second of Eqs.
(2), and usinq the first of Eqs. (2) to eliminate the curl of i.
The result is

(V2 + k2 ) E = 0 (4)

where

k c-IT w~ 1E (5)
Co CO

Here, w=2nf is the angular frequency of the incident wave, and Co the
speed of liqht in vacuum (i.e., c0 =3x1O'cm/sec).

Since there is a physical discontinuity at each media interface,
several boundary conditions must be satisfied. It. is thus required
that between the *1th and the j+1 nedia,

3



(E.)tan E (E+1tan

3 (6)
(H )tan = (H.+1)tan

This is a statement of continuity of the tanqential components for the
electric and magnetic fields across the various interfaces.

The electric field in medium (4) is given by

1- 1(7

+ A B4expi k( - ZgOCOs 64 +p i4 iI 1J 4

where A4. and R4. are the amplitude coefficients of the incidence and
reflected waves, respectively, =d +d3  is the location of the
interface separating media (3) and j"4), while e,4 is the incidence
anqle. The tangential component of the magnetic field in medium (4)
is given, using Eq. (2), by

H4X A4, exp [-ik(Z-Zs)COS e+] B4exp [1k (z-zs) cos e4.

exp IikZ sin (8)1

where

C ____ (9)

is the field impedance defined as the ratio of the tangential
component of the electric field to the tanciential component of the
macinetic field. Similar expressions are obtained for the electric
and magnetic fields in the other three media. In medium (1) one has
R1-0 be-euse there is no reflected wave. The connecting bond between
phase-relationships on either side of a boundary is provided by
Snell's law, which is,

i ____________________4



4 ks kis in6 for 1 1, 2, 3 (10)

I.
where

C -

i  cev

Three sets of equations involving the coefficients Aj and Rj can
be obtained usinq the boundary conditions, Eqs. (6), at the
interfaces. [i. e., z=O, z=d 2 , and z=d 2 + d 3) In particular, on the
boundary separating the 2nd and 3rd mediun. the boundary conditions
to he satisfied (Eqs. (6)) are,

A2exp (-ik2d2cosO 2 ) + B2exp (ik2d2Cos02 ) - As + B3  (12)

A2exp (-ik2d2cos 62 ) - B2exp (ik2d2cose 2 ) = 12- (As - 33)Z3

Inspection of Figure 1 shows that the reflection coefficient R
is given by the ratio

R - B4 (13)

Similar expressions can be obtained for the continuity conditions at
the two other interfaces which then can be used to determine A4 and
R4 In terms of A,. After all the reductions, the reflection
coefficient of the bilaminar system under study is

R A- coozco988-B- sinksin6, - i [-Cinkcos h + D- co2sain6iA+ Co.86tCoifi,-B ein42sin6s - i LC+9in6acos6u + D- Coa2U611-6s (14)

where

N5



I+

A- - 2z3(Zl ±ZOs
+ 2

lit . ziz3+ zizi.
C+  2 z (zi + zlz,) (15)

- Z2 (zS + -- za,)

and

62 = 2' (fd3)1 - -2 si 4)
CO a£2 (16)
2n-' I C4 e

6a =~L~(fds) W(C-3' N 1 -Sin~e
Ce C

and ci is the thickness ratio c=d 3/d2>1. In the case where E is
parallel to the air-ice interface, the impedances are

z I/ [iy cosej (j -1, 2, 3, 4)

and also (17)

Z- cosel // (j - 1, 2, 3, 4)

iii

for the case where E is parallel to the plane of incidance.

The numerical values used in this analysis for the dielectric

constants are as follows:

t6
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Air: Cie 1 Ice: C3 - 3.2

Oil: C2 r-2 Water: cl - 81

In the limitinq case where d2+0O (and 62 +0), the reflection
coefficient reduces to that of a single layer of thickness d
separatingq two different media, viz,

RaZ3(ZI - ZO. COS63 -irdi - ziz~l sin6s 19I R - Z3(ZI + Z4) COS63 -IZ43 + ziza.] in6s 19

This same result is also obtained from Eq. (14) when media (2) and
(3) are the same [i . e. , Z 2 =Z 3, C2 =cF31. For completeness, we also
give the transmission coefficient T for the double layer systeri

T -A+ -2zjz 2 3 /COS62COS6S A

tan52 tan63- i LCran2 D+ tang?]- Aa (20)

which for one layer (i. e., d2 -0 62-0) reduces to

2z1 zp

T- Z3(ZI + zO. cas 63- iL z + ZIZa.Jsin6s (21)

Equations (14) [or (20)) and (19) [or (21)] are exact solutions for

the reflection coefficient [or the transmission coefficient] for a
two-layer and one-layer dielectric slab, respectively, separating two
semi -infinite non-conductive miedia.

The square of the magnitude of R can he expressed as

-R1 zj(z: - Z4 )2COS263 + (Zj - Za.4) 2 sin2 6 (22)
z'S(zi + Za.)'COS'63 + (ZI + ZIZa.)' si'6g 22

for a single layer, and

1R12-r~os6CoF'53 Bsn6 s,6 2 + fcsifl6 cos6 + Dcos Sifl&l (3

JR1 [AOS2CO63 5,s2n62si1
63J& + 1&.sin62cost2- c0565i6 3

77
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for the bilaminar confiquration.

1 1 Plots of target cross-sections or of reflection coefficients
R 2as functions of frequency (or frequency-thickness products) and

of another variable such as anqi of incidence e4 have been referred
to as "response surfaces" in th past (12). The response surface for
a single (d 2-0) layer (parallel r polarization) is shown in Figure 2
for frequency-thickness products ranging from 0 to 900 MHz-meters,
and incidence angles e4 from (P (normal) to 900 (grazing). This
response surface exhibits a series of peaks and valleys which are
seen to be evenly spaced in planes of constant incidence anqles, but
unevenly spaced in planes of constant fd3 products. The minimum
values of IR12 correspond to values for which the real part of the
denominator of R vanishes. They approximate the resonance
frequencies of the layer of thickness d3 . For the case of a sinqle
layer system, these resonances occur for phase delays 6s which are
odd multiples of 7/2. For normal incidence cases, this corresponds
to plate thickness which are proportional to an odd number of
quarter-wavelengths. These eigenfrequencies are the natural
resonances for the unloaded plate.

For the bilaminar system, the resonances occur at values of the
frequency thickness products fd 3 and of the incidence angle 64 for
which

A+cos6 2 cos63 - B+sin6 2sin63 . (24)

For fixed incidence angles, this characteristic equation
determines the frequency-thickness resonances (fd3)i of the bilaminar
system (i=1, 2,...n). Note that Eq. (24) represents the vanishing

of the real part of the denominator of Eq. (14).

Figs. 3 and 4 exhibit the response surface for the bilaminar
system, for various polarizations, ice-to-oil thickness ratios, and
in various frequency regimes. The six parts of Fig. 3 are all
produced for incidence angles e4 in the range 0494<900 and for the
frequency-thickness products in the ranqe O(fd3<9O0MHz-meter. The
upper-most plot in Fii. 3 is for perpendicular polarization, (see
Fici. 1) a case of little interest in this analysis, while the other
five plots are all for the case of parallel (i. e.,s E1  )
polarization. The second plot of Fig. 3 corresponds to the cae o
a single layer with parallel polarization. The following plots
(third to sixth from the top) are for decreasing values of the
parameter a as follows: third, for a=5 00; fourth, a=100; fifth,
a=10; and sixth, a=5. These correspond to increasingly thicker
layers of oil (d2 ) relative to a fixed layer of ice (d3 ). The last
one, for example, corresponds to an ice layer five times thicker than
the oil layer. Figure 4 presents again the response surface, all for
parallel polarization, but in the much larger range of
frequency-thickness products going from 0 to 3 GigaHertz-meter.
Highly inclined ridges appear in the response surface in the higher

8



frequency parts of the ranqes. The top plot is for a single layer,

or a double layer with a=-. The second to fourth plots correspond
to a values of a=50,000, 500 and 5, respectively. These plots are

I all exact, no approximation having been introduced yet. Practical

radars operate in the upper portions of these plots.

From Eq. (24) [or Eq. (19)], it follows that for a single
layer (i. e., 62-0) the characteristic equation givinq the resonances
reduces to cos63=0. Table 1 presents a listinq of the first twenty
roots of the hilaninar situation ooverned by Eq. (24). This table
is constructed for the same thickness ratios considered in Fiq. 4
which are a =d 3 /d 2  = 50,000, 500, and 5 MHz-meter. Table 1 is
constructed for the case of normal incidence 0 4=0

0 . Table 2 contains
exactly the same information as in Table 1 but for an incidence anqle
of 04=30 °. These entries correspond to the location of the minima in
Fiq. 4, but in the planes 0 =00 and 300, respectively.

9
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11. MODEL FORMULATION IN TERMS OF THE RFSOVAMCE SCATTERING THEORY

The RST formulation (8) first linearizes the terms appearinq in
the rlqht hand side of Fq. (14) by means of a Taylor series
truncated after Its second term. We denote

(fda) - A' cos zcos 6a B± sin asin6 s (25)

then, the two-term Taylor series expansion about fon is (for each n):

Fi (fd3) - Ft (fends) + (f- fen) d "....... (26)

Here, fon are the resonance frequencies, roots of Eq. (24) for

constant incidence angle a. , or which are the same, they are the
roots of

F (fda) -0 , (for f for) (27)

It is now clear that

(n n (n) . (n)
F-(fonds) = A-cos - 2D 8 0, (28)

and

F (f o d ) [( A + si n c (

2 (f0 da) - ( fds)f 3) i62o 30~go f-fon

] (29)___ ± &5-. J4 . o~) Io

and the derivatives are found from Eqs. (16) to he:

"a(fds) c£ a C 2 (30)

and

K(fds) = co CL (31)

10



It is not hard to show that Eq. (14) can now be re-written as

a + b(x - xon) + i g(rn/2)
R (32)

where x - "on + i (rn/2)

n-I

2 .a -tsn coS63 + +O26SiV2 ->-on (33)

r aF- /F IF
b- [x ax J Xon (34)

(n), (h) (n (n)
C- sin6z2ocos63 + D-cos620 n0

sinWncos$ )  ()+ D.cos6 W (n) (35)C n 0l 30 +1 D osuos o30

(n) (n)
a (AB + - A+B-)sir6 2o sin63p (36)

and x=fd 3. An

The form of the reflection coefficient in Eq. (32) exhibits the
resonance character of the phenomenon. it was borrowed from nuclear
scatterinq theory, where similar expressions a e associated with the
names of Breit and Wigner (13),and it is now the central-type of
expression for the RST-analysis of macroscopic scatterinQ problems in
electromannetics, acoustics, and elastodynamics (8). The summation
in Eq. (32) -is merely symbolic, since the formula and the
RST-approximation are only valid in the vicinity of the resonances,
and the sum merely means that the neiqhborhoods of all the resonances
must he actounted for. Each resonance xon has a width r. associated
with the imaqinary part of the simple denominator of Ea. (32).

In terms of the RST formalism, it follows from the above
analysis, that the square of the modulus of R which is the quantity
plotted in all the qraphs, is Oiven hy

11
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I

1 12[ + b (Xx '081)1 2 + 2R ut (x - xon)+ +-rn,/4 (37)

for the hilaminar system. For the single layer, this expression
reduces to

IRI 1 2 I(X - X01)) + P' Y 2/ 4
R n ( x - Xo n) + 'yn/4 (38)

where the x on are now the roots of cos63=0, rather than the roots of

the characteristic equation (24), and where a-4) and

e - (zI - z4)/(z1 + z.) = A-/A+
( (39)

f = (zj - z za)/(zj + zlza) = D-/D+

D+ Co (z + zIz4.) 2 61

2A+ 316 27 z3(ZI + z4) C
2Aax

and the layer of thickness d2 (i. e., oil) has been removed since in

this case d 2 .0. We have already shown in the acoustic case (14) how

the casting of the expressions into the RST-forms can he made exact

by means of Mitta-Leffler rather than Taylor series expansions, a

point that will not he considered further here, since the approximate

PST expressions developed here are adequately qood and useful for our

purposes. We note that the one-layer resonance relation in Eq.

(38), obtained as a particular case of our more general Eq. (32), is

the electromagnetic counterpart of an available acoustic

relation (10) useful to study ocean bottom properties.

III. NUMERICAL CALCULATIONS AND DISCUSSION

The quantity 1R12 is a scalar function of incidence anqle B4 and

frequency-thickness products fd 3. This quantity can be plotted

three-dimensionally as we have shown before in Figs. 2, 3, and 4.

It can also be plotted two-dimensionally versus one of the variables,
keeping the other one fixed. For normal incidence (I. e., 64 =0),
Fiq. 5 shows the two-dimensional response curve (i. e., IR12 vs.

12
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fd3 ) in the range Ofd< 1,000 megahertz-meters., first for a single
layer of ice separating air from water (and for rii polarization),
and later for a double layer of ice and oil with four levels of
oil-thicknesses relative to the ice's. The relevant values of a in
the bottom four graphs of Fig. 5 are a =ds/d2 -500, 100, 25, 5,
respectively. Two sets of curves are shown in these graphs, one in
solid and the other in dashed lines. The solid lines represent' the
results of exact calculations using the (complicated) classical
formulism that led to Eqs. (23), (15), and (16). It is quite
difficult to interpret the physical phenomenon from these cumbersome
expressions. The dashed lines represent the results of approximate
calculations using the RST-formulism that led to Eqs. (33) - (37).
It is quite evident from these plots that the RST-formulism generates
each resonance "dip", one at a time, and that the agreement between
dashed and solid curves near the tip of each minima (or dip) is
nearly perfect, and only away from each resonance minima do
differences become apparent between the two. In fact, the agreement
betwen solid and dashed curves is near perfect down to the half-width
of each resonance-dip, measured at half-minimum, and qiven by Eq.
(33).

The RST-form in Eq. (37) or better in (32), is much clearer to
understand and it represents the addition of contributions each
emerqinq from a pole located at

x = xon - i rnl2 (40)

in the complex x-plane. We have expanded on this type of
interpretation before (15) in similar instances. The real part of
the pole-position gives the location of the resonance minimum in the
x=fd 3 axis, and its imaginary part is its half-width. As shown in
Fia. 5 as well as in Table 1, for a single layer the spacing between
resonances, the magnitudes of tR12 at resonance, and the resonance
half-widths are all constants. Further observation of Fig. 5 shows
that when the ice layer is very thick compared to the oil layer
(I. e.,a =500), there is hardly any visible difference between the
response curve for the bilaminar configuration and that of the single
ice layer shown at the top of Fig. 5. The resonance locations,
roots of Eq. (24), approach those of the single dielectric slab as
d2- 0. For ice-to-oil thickness ratios of 100 or less, the response
curve of the bilaminar layer configuration starts to differ visibly
from that of the single layer. The difference manifests Itself in an
upward slope of the response curve that culminates in the wavy
undulations shown at the bottom of Fig. 5, where a-5. The pattern
exhibited is similar to the modulation produced by the beating
toqether of two sinusoidal waves of different frequencies. We repeat
that all results displayed in Fig. 5 exhibit excellent agreement
between the exact solution (solid lines) and the approximations
Inherent to the Resonance Scattering Theory (dashed lines). We
remark that there is a minute difference between the exact
resonances, at the minima points of the solid line graphs, and the
RST (dashed) approximations, which is due to the presence of the

13
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4
quantity "a" appearing in the numerator of Eq. (32), which is small
for the case at hand. We also note that while the spacing between
resonances and their widths were constants for the single-layer case,
this no longer holds for the bilaminar configuration where a "cyclic"
variation is now present.

IV. THE INVERSE SCATTERING PROBLEM

It is assumed that the electromagnetic properties of air and
water, in this case E4, el, are known. The solution of the inverse
scattering problem then reduces to a determination of the paramters
d2, E2 , d 3, 63 for the thicknesses and dielectric constants of the
oil and ice layers. We will show that sufficient information can be
extracted from a careful analysis of the response surfaces and curves
presented in Figs. 2 through 6 to completely identify these
parameters. The key to the solutionlies in an understanding of the
characteristic Eq. (24) which determines the locations where
resonances occur. The quantities A+ and R+ present in this equation
depend on the dielectric constants of the four media involved in the
reflection process, as well as on the initial incidence angle e0.
For simplicity in the anlaysis we shall assume normal incidence
although any oblique incidence could have been used just as well.
The phase delays introduced by the two finite layers, 62 and 63, (C/o
Eqs. 16) depend on the dielectric constant and thickness of the
respective layer as well as on the frequency of the incident
radiation. We note that if the thickness of the oil layer is small
and the frequency is low, then 8. will have a small value. If it is
further required that 63 not be small, then the characteristic Eq.
(24) is approximated by

cosS3 - 0 (41)

which we saw was the resonance condition or characteristic equation
for a single (upper) layer (of ice). Thus, at low frequencies, the
bilaminar layer problem with a large ratio a of ice-to-oil
thicknesses, behaves to first order like a single ice layer.
However, as the frequency increases or as the oil layer thickness
increases, the effects of the oil layer on the resulting response
curves become more pronounced. There is a modulation effect visible
in the response curves (c/o Fig. 5) and caused by the presence of
the oil layer which was discussed in §111. We further note that in
the bottom graph of Fig. 5, the first displayed resonance is very
near in amplitude to that of the single ice layer given in the top
graph of Fig. 5. As the frequency increases, the amplitude of the
followinq resonances start to increase approaching a minimum which
coincides with the value seen for a single oil layer in Fig. 6. How
closely the resonances will approach those of the single oil layer is
ultimately governed by Eq. (24). It, therefore, followsthat the
amplitude oscillations introduced by the modulation effect here
described (c/o Fiq. 5, bottom graph) are bounded by the extreme
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values of the resonance amplitudes of the oil or the ice layers
individually and the modulation is confined to occur in between them.

It can be seen from Eq. (32) that at any resonance

R R1[ a'(r/2) + 1 (42)

where rn/ 2 , q, and a were given be Eqs. (33), (35) and (36),
respectively. It is easily shown for resonances where either cos 62
or cos 63 is close to zero, that a/(rn/2) is neqligihly small. By
means of Eqs. (29) - (36) this ratio is

n) (nn.+ W43a A7 - ell-) C08 20 (43)
(rn/2) B+ (;sino nsind6n Tycos6( sin('n))

A+B- - A-B+ 0 1

tantonk D+tar6( , o

Thus, for larqe values of either tan)20 or a 3 1 it follows that

ja/ .(rn/2), o tark 6x)]-'or[tan - (44)

Hence, in the neiqhborhood of these resonances, the ratio 12a/r n I is
neqliqihle and any resonance amplitude is essentially qiven by

R--R

which reduces to

o C- (45)Ro-

for an oil-type resonance provided tha tan62 >>, and to

D- (46)

for an ice-type resonance provided that tan63>l.

15



For the specific proble considered here (i. e., icC and oil)
the resonances with the smallest amplitudes (i. e., IR| 0.'2?6) are
caused by the ice layer (see Fig. 5 top) while. the resonances with
the larnest amplitudes (i. e., IRI2- 0.405) are due to the oil layer
(See Fiq. 6). If the amplitudes of the ice and oil resonances,
distinquished in this fashion, are represented by Po and Rj,
respecitively, then it follows fron Eqs;: :(45) and t he expressions
for C± or D± in Fqs. (15) that

zz (z1ZI) (1 + Ro) (47)= - RZZ), PO "

The impedances z, and Z4g are known quantities, Eq. (9), while

Pa is determined from the calculated response surfaces of from
ratterns similar to those in Figs. 5 and 6 obtained fror
r easurements. For normal incidence, Eq. (47) directly yields the
dielectric constant of the hidden (oil) layer in the forn

F2 = (zIz4)-a- (7 R ) . (48)

In a similar fashion, the dielectric constant for ,the. upper
(ice) layer is

C3 = (Zz + R(49)

In what follows we will assume these dielectric constants known
and nivpn by Eqs. (4P), (49). Thus, all the constants A±, P±. C±,
D± appearing in Fq. (15) can be determined from selected resonance
amplitudes in the reflection coefficient plots. The remaining still
undetermined quantities are the thicknesses of the oil and the ice
layers. This inforrmation can be extracted from the (half) widths of
the resonances.

For the purposes of solvinq the inverse scatterinq problem, we
note that the response surfaces and curves in Figs. 2-6 are all
really found in practice as functions of frequency f, rather than
frequency-thickness products fd 3. Figs. 2-6 have all been displayed
versus x ( =fd 3 ) for convenience in the formulation and ease in the
display, but with the understanding that f was the physical quantity
varyina alon those axes since d3 is not really known apriori. The
difference between x and f is the constant scale factor d 3. If those
response curves were displayed versus f, the amplitudes of the
resonances would remain the same as in Figs. 2-6 but their width

16
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would be cha.gged by a factor of ds. The widths.rn given iq E q. (33)
in plots displayed versus x will now become widths rn in plots
displayed versus f and they are qiven by

CO.i6,(n,) + D+COS66~n) Sin 3 (50)

a value which differs from that in Eq. (33-) by a scale factor d3 now
present in the denominator. It is clear that

d F+ aF+
dz - - _ --

ax a

and that

aF+ 2___ a - +V2- 1 B+  st COst30 +

[A+ /E7 + B+ TcC-os62 sin (51)

For an oil-type resonance, for which tanS2 1, Eq. (50) gives the
approximate result

*2 2 d[A+ /C2 91 +B (52

and for an ice-type resonance, for which tan63> ,

i ~I' D)+

2 27t d 3 [A+ VE,+ B+ V(C- -3
Co
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Dividing these two equations one by the other and solving the result
for az-' (=-d2/ds) yields,

4 - S - 3.(54)

-~ where

I Once a-' is known, either Eq. (52) or (54) can be used to determine

I d2 and d13. These thicknesses come out to he

T~ L-9*1 r' 1 (56a)

d~in 7IhIL-:Fr--- r (56b)

which are expressed here in terns of measured widths rl 0 I r~i and of

quanitites such as A+, R+,- C+, D+, F- , c3 all determined earlier.
All the material and geometrical parameters required to completely

solve the inverse scattering problem have been determined from the
radar reflections.

18



would he changed by a factor of d3 . The widths,.n q.iven in Eq. (33)
in plots displayed versus x will now become .widths r; in plots
displayed versus f and they are qiven by

d+sindt) C +on D O si n (50)

a value which differs from that in Eq. (33) by a scale factor d3 now
present in the denominator. It is clear that

d 
F+

ON af

and that

( 1. 21T i+ - i~- (n) (n)
S 2 A F 2 a-

I + B+  3sino C0 30 +

[A :* / _C_3 + B + A 7 a -I O S kO S i n 3  5 1

For an oil-type resonance, for which tan,>>l, Eq. (50) qives the
approximate result

227r d (5+2)CO 43[A+ ? O-1 
(

and for an ice-type resonance, for which tan63)>1,

riD+
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Dividing these two equations one by the other and solving the result

for a-' (-d=/d) yields,

S h ,AS (54)

vhere c+  r,~s
IS

Once a-' is known, either Eq. (52) or (54) can be used to determine

d2 and d3. These thicknesses come out to he

.. 1TVE2 Atj

which are expressed here in terns of measured widths rno , rIi and of

quanitites such as A+, R+,. C+, D, -2 , £3 , all determined earlier.

All the material and qeometrical parameters required to completely

solve the inverse scattering problem have been determined from the

radar reflections.
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V. CONCLUSIONS

We have constructed the RST predictions for the reflection coefficient
of a bilaminar plane configuration of dielectric layers separating two
dissimilar, non-conducting media. This predicition is compared to the
classical model prediction. The comparislon serves to emphasize the accu-
racy and simplicity of the Resonance Scattering Theory (8), as well as its
ability to yeild a clear physical interpretation of a complex phenomenmom in
terms of scattering poles. Furthermore, the RST shows its capability as a
material probe to extract geometrical and material composition information
from the set of scattering layers returning the reflected radar echoes.
This capability is used to completely solve the inverse scattering problem
for the bilaminar configuration under analysis. The locations and widths of
the resonances as well as their amplitudes determine the thickness and
dielectric compositions of both interacting layers. The process disen-
tangles which set of resonance features in the reflected echo is caused by
which of the layers. The calculations that we display in many graphs
illustrate the case of an oil layer hidden under a covering of ice, both
media sandwiched between air on top and water at the bottom. This work
could be useful in the further development of techniques for detecting and
mapping the extent of an oil spill under solid ice.

ACKNOWLEDGEMENTS

The authors acknowledge the support and encouragement received by the
Coast Guard (Dr. C. McKindra, Project Officer) and the Independent Research
Board of the Naval Surface Weapons Center (Dr. Pastine, Director).

19



.i7

REFERENCES

1. t/. T. Thomson, "Transmission of Elastic Waves Through a Stratified Solid

Material". J. Appl. Phys. 21, 89, 1950.

2. W. Weinstein, "The Reflectivity and Tranamissivity of Multiple Thin

Coatings", J. Optical Soc. Amer. 37, 576, 1946.

3. P. King and L. B. Lockhart, "Two-layered Reflection-Reducing Coatings",

J. Optical Soc. Amer. 36, 513, 1946.

4. L. N. Hadley and D. M. Dennison, "Reflection and Transmission Interference

Filters", J. Optical Soc. Amer. 37, 451, 1947.

5. P. M. Morse and U. Ingard, Theoretical Acoustics, McGraw-Hill Book Co.,

New York, N.Y., 1968.

6. L. M. Brekhovskikh, Waves in Layered Media, Academic Press (English trans-

lation supervised by R. Bayer), New York, 1960.

7. B. Alder, Editor, Methods in Computational Physics, Academic Press 12,

New York, 1972.

"U: 8. L. Flax, G. Gaunaurd and H. fberall, "The Resonance Scattering Theory" in

Physical Acoustics Vol. 15, Ch. 3, 193-295, Academic Press, N. York, W. P. Mason

and R. N. Thurston, Editors, 1981.

9. R. Fiorito and H. "Uerall, "Resonance Theory of Acoustic Reflection and

Transmission Through a Fluid Layer", J. Acoust. Soc. Amer. 65, 9-14, 1979.

10. W. R. Hoover et. al, "Resonances in Acoustic Bottom Reflection and Their

Relation to Ocean Bottom Properties", Catholic Univ. of America Report of

Jan 14, 1981. (15pp & 7 figs.)

11. G. Gaunaurd et al, "Resonances of Dielectrically-coated Conducting Spheres

and the Inverse Scattering Problem", J. Appl. Phys. 52, 35-43, 1981.

12. D. Brill, G. Gaunaurd, and H. *U'erall, "The Response Surface in Elastic

Wave-Scattering", J. Appl. Phys. 52, 3205-3214, 1981.

20



13. G. Breit and E. Wigner, "Capture of Slow Neutrons", Phys. Rev. 49, 519,

1936.

14. G. Gaunaurd and H. Uberall, "R-Matrix Theory of Sound Scattering Via the

Mittag-Leffler Expansion", J. Acoust. Soc. Amer. 68, 1850-1857, 1980.

15. G. Gaunaurd and H. Uberall, "Numerical Evaluation of Model Resonances in

the Echoes of Compressional Waves Scattered from Fluid-filled Spherical Cavi-

ties in Solids", J. Appl. Phys. 50, 4342-4660, 1979.

21

d-U



TABLE 1

CA:SE- Normal Incidence (i.e., e4 - 00)

LOCATION OF THE RESONANCE FREQUENCIES

SINGLE LAYER DOUBLE LAYER

I (MHz-meters) a- 50,000 a - 500 a - 5

1 41.9 41.9 41.9 35.2

2 125.8 125.8 125.6 106.4

3 209.6 209.6 209.3 179.2

4 293.5 293.5 292.9 253.1

5 377.3 377.3 376.6 372.2

6 461.2 461.2 460.3 400.5

7 545.0 545.0 544.0 472.2

9 628.9 628.9 627.9 542.7

9 712.8 712.7 711.4 613.5

10 796.6 796.6 795.1 685.7

11 880.5 880.4 878.8 759.4

12 964.3 964.3 962.5 833.6

13 1048.2 1048.1 1046.1 907.2

14 1132.0 1132.0 1129.8 979.4

15 1215.9 1215.8 1213.5 1050.2

16 1299.7 1299.7 1297.2 1120.7

17 1383.6 1383.5 1380.9 1192.4

18 1467.4 1467.4 1464.6 1265.7

19 1551.3 1551.2 1548.3 1339.8

20 1635.1 1635.1 1631.9 1413.7
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TABLE 2

CASE: Oblique Incidence at O4 - 300

LOCATION OF THE RESONAN~CE FREQUENCIES

SINGLE LAYER DOUBLE LAYEP

i (MHz-meters) a - 50,000 c= 500 a - 5

1 43.7 43.7 43.6 36.7

2 131.0 131.0 130.7 110.9

3 218.3 218.3 217.9 187.0

4 305.7 305.7 305.1 264.4

5 393.0 393.0 392.2 342.0

6 480.3 480.3 479.4 418.9

7 567.7 567.7 566.6 494.0

8 655.0 655.0 653.7 567.5

9 742.3 742.3 740.9 641.1

10 829.7 829.7 828.1 716.3

11 917.0 917.0 915.2 793.1

12 1004.3 1004.3 1002.4 870.8

13 1091.7 1091.6 1089.6 948.2

14 1179.0 1179.0 1176.7 1024.2

15 1266.3 1266.3 1263.9 1098.5

16 1353.7 1353.6 1351.1 1171.8

17 1441.0 1441.0 1438.2 12460

18 1528.3 1528.3 1525.4 1322.1

19 1615.7 1615.6 1612.6 1399.5

20 1703.0 1703.0 1699.8 1477.2
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